
Avast Antivirus for Linux
Technical Documentation

Avast Software <support@business.avast.com>

Version 4.6.1, 2025-03-24

mailto:support@business.avast.com


Table of Contents
Version history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Business products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2. Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Debian/Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

RHEL/CentOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Installation of virus definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Installing in a container or with alternative init system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Setting up non-privileged user account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Setting up virus definitions updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Running the daemons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Avast public key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

3. Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

4. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Features requiring Internet access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

5. Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Systemd units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Running scans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

6. Virus definitions updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Local virus definitions mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Security considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

7. REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Bash client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

NGINX integration (RHEL/CentOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

8. AMaViS integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Appendix A: scan(1) manual page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Appendix B: avast(1) manual page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Appendix C: avast-protocol(5) manual page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Appendix D: avast-fss(1) manual page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Appendix E: avast-rest(1) manual page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Appendix F: avastlic(1) manual page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

Appendix G: REST API specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Appendix H: Avast public key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Appendix I: Third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

1



Version history
The following table lists significant changes made to this documentation and to the product itself.
The full changelog is available in /usr/share/doc/avast/ChangeLog after installing the avast package.

Date Version Changes

2022-01-31 4.0 Added systemd support.
Added REST API component.
Added support: Debian 11, Ubuntu 20.04 LTS, RHEL 7, RHEL 8.
No longer supported: Debian 9, Ubuntu 16.04 LTS, RHEL 6, OpenSUSE.
Changed repo URL and GPG key. See Migration from 3.x to 4.x

2022-07-31 4.1 Added support: Ubuntu 22.04 LTS, RHEL 9.
Added note about Amazon Linux 2 support.

2022-09-26 4.2 Support running in a container (without systemd)

2023-01-16 4.3 Added standalone avast-license package with avastlic(1) tool. The tool is
updated, older versions may stop working soon.

2023-07-10 4.4 Added support: Debian 12 "bookworm"

2024-04-09 4.5 Added new option TELEMETRY, renamed option HEURISTICS to COMMUNITY.
Initial download of VPS no longer blocks installation.

2024-05-13 4.5.1 Added support: Ubuntu 24.04 LTS

2025-01-27 4.6.0 This is the last release for RHEL/CentOS 7 (will be dropped in 4.7.0).
Added vpsmirror script.
Added config option THREADS (parallelize scan of directories).
Added threat taxonomy fields to verbose JSON output (rest, scan).
Added heartbeat telemetry (enabled when TELEMETRY=1) to gather info
about installation’s OS/distro.

Migration from 3.x to 4.x
The program update URL and the GPG key has been changed.

Please update the URL according to the Installation section. For example:

• DEB: deb http://deb.avast.com/lin/repo debian-buster release
⇒ deb https://repo.avcdn.net/linux-av/deb debian-buster release

• RPM: baseurl=http://rpm.avast.com/lin/repo/dists/rhel/release
⇒ baseurl=https://repo.avcdn.net/linux-av/rpm/el$releasever/release

2



See Debian/Ubuntu for the supported Debian and Ubuntu releases.
See RHEL/CentOS for the supported RHEL-based distributions.

The Avast public key has been also changed, please install the new key according to Installation
section.

3



1. Overview
The Avast antivirus for Linux includes the following components which are distributed as standard
software packages — DEB for Debian and Ubuntu systems, and RPM for RedHat systems. Software
repositories are also provided so that all of the standard system management tools can be used to
keep the Avast programs up to date.

Packages

avast

The avast package provides the core scanner service (avast) and a command line scan utility (scan).
The package allows for on-demand scanning and mail server integration using AMaViS as
described in section AMaViS integration.

This package also contains following utilities:

• vpsupdate - a script for downloading VPS (virus definitions)

• bspatch - used for incremental VPS updates

• submit - this tool handles reporting (see TELEMETRY, STATISTICS, COMMUNITY options)

The avast package is required by the avast-fss packages.

avast-fss

The avast-fss package provides a fanotify(7) based "on write" file system shield designed for file
server usage. The typical use case for avast-fss are SMB/NFS file servers.

avast-rest

The avast-rest package contains an HTTP server which provides REST API for avast scanner service.

avast-license

The avast-license package contains avastlic tool. It’s a standalone command-line tool which helps
with downloading the license file when you have an activation code or a wallet key.

Business products
The Avast components are available as the following business products:

Avast Security Suite for Linux

License for all packages.

4



2. Installation
The Avast Linux server product is installed in two steps:

• Add the Avast repository to the system repositories.

• Install the desired packages from the repository.

The instructions differ depending on target distribution.

Debian/Ubuntu
1. Add the Avast repository to the system repositories.

Supported distributions ($DIST variable in the following command):

◦ debian-buster - Debian 10 “buster”

◦ debian-bullseye - Debian 11 “bullseye”

◦ debian-bookworm - Debian 12 “bookworm”

◦ ubuntu-bionic - Ubuntu 18.04 LTS (Bionic Beaver)

◦ ubuntu-focal - Ubuntu 20.04 LTS (Focal Fossa)

◦ ubuntu-jammy - Ubuntu 22.04 LTS (Jammy Jellyfish)

◦ ubuntu-noble - Ubuntu 24.04 LTS (Noble Numbat)

root# DIST=$(. /etc/os-release; echo "$ID-$VERSION_CODENAME")
root# echo "deb https://repo.avcdn.net/linux-av/deb $DIST release" \
      > /etc/apt/sources.list.d/avast.list

For example, Debian 11 “bullseye” will have this line in /etc/apt/sources.list.d/avast.list:

deb https://repo.avcdn.net/linux-av/deb debian-bullseye release

Debian 9 “stretch” is no longer supported. The old Avast packages (version 3.x) are still available
at the old URL:

deb http://deb.avast.com/lin/repo debian-stretch release

2. Install Avast public key and update package manager state:

$ curl -s https://repo.avcdn.net/linux-av/doc/avast-gpg-key.asc | sudo tee
/etc/apt/trusted.gpg.d/avast.asc
$ sudo apt update

3. Install the avast package and optionally the avast-fss, avast-rest packages.

5



root# apt install avast
root# apt install avast-fss
root# apt install avast-rest

RHEL/CentOS
1. Add the Avast repository to the system repositories.

Supported distributions:

◦ el7 - RHEL 7, CentOS 7, or compatible

◦ el8 - RHEL 8, AlmaLinux 8, Rocky Linux 8, or compatible

◦ el9 - RHEL 9, AlmaLinux 9, Rocky Linux 9, or compatible

Note that $releasever is a variable known to YUM, so it doesn’t need to be replaced manually in
the avast.repo file, as long as the actual $releasever matches one of the above versions.

For Amazon Linux 2, please replace el$releasever by el7 manually. The distribution is RHEL 7
compatible, but uses its own versioning scheme, so the variable would evaluate to el2.

echo '[avast]
name=Avast
baseurl=https://repo.avcdn.net/linux-av/rpm/el$releasever/release
enabled=1
gpgcheck=1
' | sudo tee /etc/yum.repos.d/avast.repo

The content of /etc/yum.repos.d/avast.repo will be:

[avast]
name=Avast
baseurl=https://repo.avcdn.net/linux-av/rpm/el$releasever/release
enabled=1
gpgcheck=1

RHEL 6 is no longer supported. The old Avast packages (version 3.x) are still available at the old
URL:

baseurl=http://rpm.avast.com/lin/repo/dists/rhel/release

2. Install Avast public key:

root# rpm --import /path/to/avast-gpg-key.asc

6



3. Install the avast package and optionally the avast-fss, avast-rest packages.

root# yum install avast
root# yum install avast-fss
root# yum install avast-rest

Installation of virus definitions
The virus definitions database (VPS) is downloaded automatically after installation of the avast
package. The package script triggers the systemd unit avast-vpsupdate.service, which downloads
the initial version of VPS. If the initial download fails, you have to later start it manually. Until this
successfully finishes, no other service will be fully operational.

Installing in a container or with alternative init
system
The installation packages are made primarily for systemd-based systems. During installation,
systemd units are also installed and started. If the system has not been booted with systemd as the
init process, this won’t work. This is usually the case when installing Avast for running in a
container.

To make the installation fully functional, please follow the below instructions.

Setting up non-privileged user account

Most of the Avast daemons and scripts are supposed to be running as a non-privileged user. The
user is named avast and should be created by the package installation scripts.

$ id avast
uid=998(avast) gid=998(avast) groups=998(avast)

If the user is not present, create it manually:

root# useradd avast -c "Avast antivirus" -d /var/lib/avast -s /sbin/nologin --system

Setting up virus definitions updates

The avast package contains an update script, which needs to be run to initially download the VPS
(virus definitions), and periodically update it afterward.

• On DEB-based distros: /usr/lib/avast/vpsupdate

• On RPM-based distros: /usr/libexec/avast/vpsupdate

Run the script as the avast user:

7



root# runuser -u avast -- /usr/libexec/avast/vpsupdate

(Note that the script will drop the root privileges automatically if run as root and the user avast
exists.)

Send SIGHUP to avast daemon after updating, to make it aware of new VPS:

root# kill -HUP "$(cat /var/run/avast/avast.pid)"

Note that the avast daemon cannot run when the VPS wasn’t yet downloaded with vpsupdate. It will
terminate immediately with this error:

ERROR   main: Failed to load VPS.
ERROR   main: Fatal error. Exiting.

The update script needs to be called periodically to keep the VPS properly updated. An interval of 4
hours is sufficient.

Note that there is a second update mechanism which can deliver updates immediately after
releasing. It’s called Streaming updates (see STREAMING_UPDATES in /etc/avast/avast.conf). Even
when the Streaming updates are enabled, make sure the update script is also run every few hours,
to get all updates.

Running the daemons

The daemons need to be run manually, or "daemonized" using some available tool or process
manager. There is no direct support for "daemonization", where the process makes itself a
background process disconnected from the terminal.

Each package contains one daemon:

• avast → /usr/bin/avast

• avast-rest → /usr/bin/avast-rest

• avast-fss → /usr/bin/avast-fss

The later two daemons depend on /usr/bin/avast already running.

Run each binary with -h argument to see available options.

The avast and avast-rest daemons can run as the avast user. The avast-fss daemon needs to run as
root, and it also needs the avast daemon to run as root.

Avast public key
All packages and the RPM / DEB repository metadata are signed with Avast key. The public part of
that key needs to be imported into APT or RPM package manager according to above instructions,

8



to allow verification of the signatures.

The public key file is named avast-gpg-key.asc. Full listing of that file can be found in appendix:
Avast public key. For convenience, the file can be downloaded directly from https://repo.avcdn.net/
linux-av/doc/avast-gpg-key.asc. Please make sure the content of the downloaded file matches with
the copy in the appendix.

9

https://repo.avcdn.net/linux-av/doc/avast-gpg-key.asc
https://repo.avcdn.net/linux-av/doc/avast-gpg-key.asc


3. Licensing
Access to the program repositories is not restricted in any way. The latest packages are always
available, but they require a license file to run the individual components. The product license is
stored in a file named license.avastlic. When you have the license file, copy it into the /etc/avast
directory, where the program components look for it:

root# cp /path/to/license.avastlic /etc/avast/license.avastlic

In case you have received an activation code instead of a license file, use avastlic(1) tool to
download the license. This tool can be installed from avast-license package. Please note that for
some activation codes this can only be done a limited number of times. Also, some activation codes
require customer information to be entered and as such the tool is by default interactive.

$ avastlic -o ~/license.avastlic -c ACTIVATION_CODE
$ sudo cp ~/license.avastlic /etc/avast/license.avastlic

In case the downloaded license is valid for multiple machines, it is recommended to download the
license once and then distribute the license file to all machines.

Note that it’s fine to run avastlic tool on a different machine than where the licence will be used.

10



4. Configuration
The configuration files are installed to directory /etc/avast/. The configuration options are
documented in man pages (see avast(1), avast-rest(1), avast-fss(1)).

Features requiring Internet access
There are multiple features that require the main avast service to contact Avast servers. These
features can be disabled in /etc/avast/avast.conf:

• TELEMETRY - Send telemetry data.

• STATISTICS, COMMUNITY - Send information about detected threats, to help improve the detections
(CommunityIQ service).

• REPUTATION_QUERIES - Query Avast servers about scanned files (FileRep service).

• STREAMING_UPDATES - Maintain persistent connection to continuously update virus definitions.

Set the options to 0 to disable them.

One another feature that connects to Avast servers is the VPS updater (vpsupdate script). This can be
redirected to a local mirror, see Virus definitions updates.

11



5. Operation
All Avast packages provide systemd unit files for starting/stopping the services. For example
starting the core Avast service is done by running

root# systemctl start avast

and stopping the service is done by running

root# systemctl stop avast

Reloading the configuration and the VPS is done by

root# systemctl reload avast

Or by sending SIGHUP to the avast process.

Restarting all installed avast daemons (avast, avast-fss), and recreating sockets in one transaction is
done by

root# systemctl restart avast.target

All Avast services use the system logger (syslog) to create log files and the location is dependent on
the host system. The most common log file paths are /var/log/messages and /var/log/syslog.

Systemd units

avast.service

The main service of the scanning engine.

This service may not be running right after the installation due to following reasons:

• A license is missing. See Licensing.

• Socket activation. By default, the service is started on-demand by avast.socket.

Listens on three Unix domain sockets:

• /run/avast/scan.sock - end-user protocol, see avast-protocol(5)

• /run/avast/emsg.sock - a proprietary scan protocol, used by REST API and scan(1)

• /run/avast/dinfo.sock - a proprietary info protocol, used by REST API and scan(1)

avast.socket

12



Provides socket activation for avast.service.

This unit will create the two sockets for avast.service and start it when a client program connects
to one of the sockets. This allows to save some resources when the service is not used continuously
and also shields the client program from avast.service's restarts or crashes.

Note that this feature is optional — by starting avast.service manually, the socket activation can be
skipped.

avast-vpsupdate.service

Updates the virus database (aka VPS). This unit launches the update script. It’s not supposed to be
running persistently, only when updating.

avast-vpsupdate.timer

Provides a timer for avast-vpsupdate.service. Runs the update every three hours.

avast-fss.service

This is an additional File Server Shield service, installed by avast-fss package.

Needs avast.service to be running or avast.socket ready to start it.

avast-rest.service

This is an additional REST API service, installed by avast-rest package.

Needs avast.service to be running or avast.socket ready to start it.

avast.target

A meta unit linked in all avast services. Restarting this unit restarts all avast daemons, and
recreates sockets. Enabling it enables everything Avast antivirus needs to operate.

See systemd.target(5) for more information on systemd targets.

Running scans
There are three ways how to run scans:

• Command-line scan utility - scan(1)

• Scan socket (scan.sock) - avast-protocol(5)

• REST API

They all call avast.service to perform the actual scan.

13



6. Virus definitions updates
Regularly updating the virus definitions database (VPS) is necessary to keep your antivirus
protection up to date. Avast antivirus provides a shell script which checks for, downloads and
installs the latest VPS. The update script is installed and enabled by default and executed every
three hours as a systemd timer.

Avast uses incremental updates, so the average update data size is less than 0.5MB.

Local virus definitions mirrors
It is possible to use a local, mirrored, VPS repository. This is useful when you are running several
Avast installations on your local network.

To set up a local VPS mirror, you need a local HTTP server that can serve a copy of the official
public repository. To get your local repository copy, use the vpsmirror script, that is installed via
avast package to /usr/libexec/avast/ or /usr/lib/avast/ (depending on Linux distribution).

Copy the script to another machine, if needed. Then call it, giving it target mirror directory as the
first argument. Optional second argument is arch, which is x86_64 by default. Although Avast
antivirus 4.x does not support any other architecture, the 32 bit VPS is still being updated. Use arch
i386 to mirror it.

$ /usr/libexec/avast/vpsmirror.sh /srv/avast/

Note that we no longer recommend using wget, as it’s not able to delete removed files, so the mirror
would grow indefinitely.

To change the VPS repository URL that Avast uses, edit the /etc/avast/vps.conf configuration file.
The URL in this file requires the arch suffix, so for the above command, it can be:

URL="file:///srv/avast/x86_64"

The file:// URL can be used to avoid running an HTTP server.

Security considerations
The update files are signed by Avast, and the application verifies the signature before applying an
update.

14



7. REST API
The REST API is available after installing avast-rest package.

The configuration and API is documented in avast-rest(1) man page.

Specification
The REST API specification in OpenAPI 3.0.0 format is installed together with other documentation:
/usr/share/doc/avast-rest/api.yaml.

This file can be used to generate API clients in various programming languages using an open-
source tool openapi-generator.

For example, to generate a Python client, install the tool and run:

openapi-generator generate -i /usr/share/doc/avast-rest/api.yaml -g python -o /tmp/rest-api-
python

This generates a library that can be used to request the scans. An example program is generated to
README.md.

This example shows a program which uses the Python library generated by openapi-generator
5.3.0:

import openapi_client
from openapi_client.api import default_api
from pprint import pprint

configuration = openapi_client.Configuration(host = "http://127.0.0.1:8080")

filename = "eicar.com.txt"
content = "X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*"

with openapi_client.ApiClient(configuration) as api_client:
    api_instance = default_api.DefaultApi(api_client)
    api_response = api_instance.v1_scan_post(filename, body=content,
        full=True, archives=True, pup=False, heuristics=80)
    pprint(api_response)

Bash client
Following example shows a simple client written in Bash which scans files given in its arguments:

15

https://openapi-generator.tech/


#!/usr/bin/env bash
# Usage: scan-rest.sh [FILE]...

API='http://127.0.0.1:8080'

for f in "$@" ; do
    printf "$f\t"
    curl "$API/v1/scan?filename=$(basename "$f")" \
        -H "Content-Type: application/octet-stream" \
        --data-binary "@$f"
done

The client is also installed to /usr/share/avast/scan-rest.sh.

NGINX integration (RHEL/CentOS)
This example shows how to add HTTPS layer to the REST API.

For this example, generate a self-signed certificate:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
    -keyout /etc/pki/tls/private/example.key \
    -out /etc/pki/tls/certs/example.crt

Install nginx package, create a config file for avast backend /etc/nginx/conf.d/avast-rest.conf:

upstream avast_backend {
    server 127.0.0.1:8080;
    keepalive 8;
}

server {
    server_name  example.local;
    listen 443 ssl;
    ssl_certificate      /etc/pki/tls/certs/example.crt;
    ssl_certificate_key  /etc/pki/tls/private/example.key;
    client_max_body_size 100M;

    location /avast/ {
        proxy_pass http://avast_backend/;
        proxy_http_version 1.1;
    }
}

Reload NGINX with systemctl reload nginx.

Test the HTTPS layer with CURL:

16



curl -v --insecure 'https://example.local/avast/v1/scan?filename=test.dat' \
    -H "Content-Type: application/octet-stream" --data-binary '@/usr/share/redhat-release/EULA'

Note that --insecure is only needed in this example because we use a self-signed certificate.

17



8. AMaViS integration
AMaViS is an interface between mailer (MTA) and content checkers, which is already prepared for
integration with mail scanners. This section describes how to integrate avast into AMaViS.

Integration of Avast into AMaViS includes AMaViS configuration updates and enabling access to
emails going through AMaViS for Avast to scan. This can be divided into three steps:

• Integrating Avast antivirus

Open the AMaViS configuration file (e.g. /etc/amavis/conf.d/50-user) and insert the following
lines into the file:

@av_scanners = (
  ### http://www.avast.com
  ['Avast', '/usr/bin/scan', '{}', [0], [1], qr/\t(.+)/m]
);

• Enabling Virus Scanning

Then open the AMaViS content filter configuration file (e.g. /etc/amavis/conf.d/15-
content_filter_mode) and enable antivirus checking mode by uncommenting the
'bypass_virus_checks' lines.

• Updating Access Permissions

Finally, enable the Avast scan service to scan emails going through AMaViS:

root# usermod -G amavis -a avast

18



Appendix A: scan(1) manual page

Name
scan - Avast command line scan utility

Synopsis
scan [-e PATH] [-abEfipuxJ] [PATH]…

scan [-a] -U [URL]…

scan -V

scan -h | -v

Description
Scan is the basic command line scanner that comes with Avast antivirus for Linux. It searches the
given PATH(s) for infected files and reports such files to the standard output. If no PATH is given,
the scan paths are read from the standard input, line by line.

The scan tool is a client that connects to the Avast scan service. It cannot work separately, without a
running scan service.

Options
-h

Print short usage info and exit.

-v

Print program version and exit.

-V

Print the virus definitions (VPS) version and exit. The VPS version is retrieved from the scan
service.

-U

Check URLs. Checks whether an URL is malicius. Note: the URL is checked against a blacklist, no
network request to the given URL is done.

-e PATH

Exclude PATH from the scan. Use this option multiple times when more than one exclude path is
required.

-a

Print all scanned files / URLs, not just infected.

19



-b

Report decompression bombs as infections. When set, files suspected of being decompression
bombs are reported as infected, not as errors.

-E

Scan e-mail files. Enables email-specific detections.

-f

Scan full files. When set, the entire file contents are scanned, not just the relevant file parts.

-i

Print verbose infection info. When set, verbose info about all infections found in the scanned file
is printed.

-J

Output information in JSON format.

-l LEVEL

Set heuristics level to LEVEL (0-100).

-p

Print archive content. When set, the files in an archive are listed separately, with the scan status
for each shown.

-u

Report potentially unwanted programs (PUP). When set, PUP files are reported as infected.

-T

Report tools - apps that can be used for accessing, controlling, or potentially harming computers.
When set, tools are reported as infected.

-x

Do not extract archives. When set, compressed files are not extracted during scan.

Output Format
Every detected malicious file is reported on a separate line in the format:

PATH    INFECTION

where PATH and INFECTION are separated by a TAB character. If all files are printed using the -a
option, then the clean files have a "[OK]" string as the infection name and files that could not be
scanned (insufficient permissions, corrupted archives, …) have an "[ERROR]" string as the infection
name. Files, that were excluded from the scan using the -e option have a "[EXCLUDED]" string as
the infection name.

If the -p option is set, PATH contains the archive path delimited by a "|>" delimiter in case of an

20



archive.

If the -J option is set, the output format is JSON. Each report is printed as a single-line JSON
fragment. Other options still affect which fields are present and what they contain.

Access Rights
It is the scan service that is accessing the files being scanned, not the scan utility itself, therefore the
scan service must have access rights to the scanned files. Connections to the scan service may be
restricted to clients with the same UID/GID in the scan service configuration, for details see avast(1).

Exit Status
The exit status is 0 if no infected files are found and 1 otherwise. If an error occurred, the exit
status is 2. Infected status takes precedence over error status, thus a scan where some file could not
be scanned and some infection was found returns 1.

See Also
avast(1)

21



Appendix B: avast(1) manual page

Name
avast - Avast antivirus scanner

Synopsis
avast [OPTIONS]

Description
avast is an antivirus scan service for Linux. Clients (fss, command line scan tool, REST server)
connect to the service’s UNIX socket and perform scan requests and receive scan results.

Options
-h, --help

Print usage info and exit.

-V, --version

Print the program version and exit.

-l, --license

Check license and exit (exit status 12 = missing license).

-q, --quiet

Quiet mode: do not log to stderr.

-v, --verbose

Verbose mode: increase log level (-v = INFO, -vv = DEBUG).

-J, --json-log [PATH]

Switch stderr log to JSON format.

-d, --verify-vps VPS_DIR

Verify that VPS_DIR is a valid data directory and contains a valid VPS. If the exit code is nonzero,
then the VPS is missing or invalid. The check may generate some data files in the VPS directory if
they are missing but can be generated from the corresponding "source" files.

-c  FILE

Set configuration file path to FILE. The default configuration file is /etc/avast/avast.conf.

Configuration

22



The configuration file format is INI file format, i.e. it consists of KEYWORD = VALUE entries, each on
a separate line. Lines beginning with ';' are treated as comments and are ignored. Keys may be
grouped into arbitrarily named sections. The section name appears on a line by itself, in square
brackets ([ and ]).

The following example is an avast configuration file with explicitly defined default options:

; Avast configuration file

RUN_DIR = "/run/avast"
TEMP_DIR = "/tmp"
DATA_DIR = "/var/lib/avast"
SOCKET = "/run/avast/scan.sock"
LICENSE = "/etc/avast/license.avastlic"
WHITELIST = "/etc/avast/whitelist"
SUBMIT = "/usr/libexec/avast/submit"

[OPTIONS]
CREDENTIALS = 0
TELEMETRY = 1
STATISTICS = 1
COMMUNITY = 1
STREAMING_UPDATES = 1
REPUTATION_QUERIES = 1
THREADS = 0

[PACKER_BOMB]
MAX_FILE_SIZE_TO_EXTRACT_MB = 1000
MAX_COMPRESSION_RATIO = 100

The configuration file is re-read on HUP signal by the program, but only the entries in the Options
section are reloaded, changes to the global parameters are ignored.

Global parameters

RUN_DIR

Run directory. The PID file is stored here.

TEMP_DIR

Temporary directory. The program temporary files are stored here.

DATA_DIR

Data directory. Contains the virus definitions database and various other data files used by
avast.

SOCKET

Path to the UNIX socket used by the clients to connect to the scan service. The socket is created
by avast at service start.

23



LICENSE

Path to the license file.

WHITELIST

Path to the whitelist file. The whitelist file contains sha256 hashes of files, that shall not be
reported as infections even though detected by the scan engine. The file format is one sha256
hash in text mode per line. Hash mark (#) prefixed comments can be used in the file.

SUBMIT

Path to the submit utility. If enabled (see the Options section), the submit utility creates and
sends reports about infected and suspicious files to the avast virus lab.

Options

CREDENTIALS

If enabled, avast performs a UNIX socket credentials check, whenever a new client is connecting.
If the client’s effective UID does not match the effective UID of the avast process or the client’s
effective GID does not match the avast effective GID or any avast supplementary group GID, the
connection is refused.

TELEMETRY

Enable sending telemetry data to Avast servers. This contains basic information about the Linux
distribution, version of installed Avast product, its usage statistics and debugging information.
This does not include crash reports - if you encounter a crash, please contact us. The telemetry
data is used to support and improve the product.

STATISTICS

Enable sending information about detected threats to Avast Threat Labs for analysis. This
information contains only file metadata and is used to observe how the threat spreads.

COMMUNITY

Enable sending samples of suspicious files to Avast Threat Labs for analysis. The samples are
used to identify new threats and improve the virus definitions for all users.

STREAMING_UPDATES

If enabled, the scan service establishes a permanent network connection to the avast cloud and
retrieves virus definitions updates instantly as they are released. Streaming updates are an
addition to the regular virus database updates, they do not replace them (you always get all the
streamed updates in the next regular virus definitions database update).

REPUTATION_QUERIES

Enable queries to Avast cloud-based services (FileRep, WebRep) to provide information about
scanned files and URLs. This information is used to improve results and help avoid false
positives.

THREADS

Set number of worker threads to use for scanning directories. Main thread always enumerates
files, the worker threads scan the individual files. The main thread is not counted, so 0 (default)

24



means to do all the work in the main thread, 4 means to use four additional worker threads.

The value can either be an integer, setting the maximum number of worker threads. Or it can be
a string specifying the number as a simple arithmetic expression in format (P|L)[(+|-
|*|/)<integer>], where P is the number of physical cores and L is the number of logical cores.
For example, P-1 means the number of physical cores minus 1, L/2 means half of the logical
cores.

PACKER_BOMB

MAX_FILE_SIZE_TO_EXTRACT_MB: The maximum size of a file that can be extracted by the
scanning engine, in MB. If a file in an archive exceeds this value, it will be skipped. A warning is
reported in this case: "Compressed file is too big to be processed" (42057). Note that the archives are
extracted in-memory, so make sure the machine has enough memory available before increasing
this parameter.

MAX_COMPRESSION_RATIO: Maximum compression ratio, i.e. ratio of the unpacked file size to
the packed size. If the ratio exceeds this value, the file will be skipped. A warning is reported in this
case: "The file is a decompression bomb" (42110).

See Also
scan(1), avast-protocol(5)

25



Appendix C: avast-protocol(5) manual page

Name
avast-protocol - Avast UNIX socket communication protocol

Synopsis
nc -U /run/avast/scan.sock
socat /run/avast/scan.sock -

Description
avast(1) uses a text based protocol for communication with the scan service daemon over the UNIX
socket. This manual page briefly describes the protocol.

General Protocol Rules
The communication consists of command-response pairs and is line-based. The new line terminator
is CRLF. The general command syntax is:
<command>[<space><parameter>]…

Responses may be numerical only, or may contain additional output data. Numerical responses
have the format:
<code><space><command><space><msg>

The output data format is:
<command><space><data>

Output data are always encapsulated between numerical responses 210 (DATA) and the final
numerical response for the command. Delimiters such as <space>, <tab> or CR/LF are backslash
escaped, when present in the data or command argument.

The communication from the service starts with a numeric welcome message, 220. The protocol
commands are case-insensitive.

Response Codes
200 OK
210 DATA
220 Welcome message
451 Engine error
466 License error
501 Syntax error
520 URL blocked

26



Commands
SCAN Scan a file/directory.

Synopsis: SCAN <path>

The format of the data message lines is:

<path><tab><status>[<tab><info>]

The <status> has a format of "'['<X>']'<depth>.0", where <X> can be one of: "+"
- file is OK, "E" - error during scan and "L" - infection found. <depth> is the
depth when scanning inside archives (0 for common non-archive files).

The <info> follows the "E" and "L" cases. The "L" case info has the format
"0<space><infection>". The "E" case info has the format
"Error<space><errno><space><errstr>".

Example:

> scan /etc

210 SCAN DATA
SCAN /etc/fstab [+]0.0
SCAN /etc/shadow    [E]0.0  Error 13 Permission\ denied
SCAN /etc/eicar.com [L]0.0  0 EICAR\ Test-NOT\ virus!!!
...
200 SCAN OK

VPS Get the virus definitions (VPS) version.

Synopsis: VPS

Example:

> VPS

210 VPS DATA
VPS 15051301
200 VPS OK

27



PACK Get/set packer options.

Synopsis: PACK [+|-<packer>…]

Use +<packer> to enable a specific packer and -<packer> to disable it. When
invoked without an argument, the packer set is displayed, but not changed.
The same mechanism applies to the FLAGS and SENSITIVITY commands.

Example:

> PACK -zip -iso

210 PACK DATA
PACK +mime -zip +arj +rar ... +7zip -iso +dmg
200 PACK OK

FLAGS Get/set scan flags.

Synopsis: FLAGS [+|-<flag>…]

Example:

> FLAGS +fullfiles

210 FLAGS DATA
FLAGS +fullfiles +allfiles -scandevices
200 FLAGS OK

SENSITIVITY Get/set scan sensitivity.

Synopsis: SENSITIVITY [+|-<sensitivity>…]

Example:

> SENSITIVITY +pup

210 SENSITIVITY DATA
SENSITIVITY +worm +trojan +adware +spyware ... +pup
200 SENSITIVITY OK

28



EXCLUDE Exclude path from scans.

Synopsis: EXCLUDE <path>

Paths omitted by exclusion are reported with error 42019 - Skipped due to
exclusion settings. <path> is matched as a string prefix thus e.g. "/usr/lib/"
excludes nothing because the "/usr/lib" scan path does not match and any
"/usr/lib/anything" subpath also does not match. <path> may contain wild
cards ("*").

Example:

> EXCLUDE /tmp

210 EXCLUDE DATA
EXCLUDE /tmp
200 EXCLUDE OK

CHECKURL Check whether a given URL is malicious.

Synopsis: CHECKURL <url>

Example:

> CHECKURL http://www.google.com
200 CHECKURL OK

> CHECKURL http://www.avast.com/eng/test-url-blocker.html
520 CHECKURL URL blocked

See Also
avast(1), nc(1), socat(1)

29



Appendix D: avast-fss(1) manual page

Name
avast-fss - Avast file server shield

Synopsis
avast-fss [OPTIONS]

Description
avast-fss (FSS), a part of Avast antivirus for Linux suite, provides real-time scanning of files written
to any of the monitored directories. FSS is based on the fanotify(7) access notification system
available on Linux kernels 2.6.37+.

The directories that should be monitored by FSS need to be configured in the config file (see below).
By default, FSS does not monitor any directories. Note that the monitoring is always limited to the
same mount point. If you want to monitor a mounted subdirectory of a monitored directory, add it
explicitly to the config.

FSS monitors only write events. Access to already infected files is not monitored. Any write
operation in a monitored directory triggers a scan by Avast engine. If it founds an infection, it
moves the infected file to the chest directory and reports the finding in the virus log file (see Files).

Options
-h

Print short usage info and exit.

-v

Print the program version and exit.

-c FILE

Set configuration file path to FILE. The default configuration file is /etc/avast/fss.conf.

-n

Do not daemonize.

Configuration
The default configuration file is /etc/avast/fss.conf. Its format is INI as described in the avast(1)
manual page.

The configuration consists of two parts - the global configuration options and the monitoring
configuration. The sample configuration below shows all available global configuration options and

30



their default values followed by some examples of monitoring (and monitoring exclude) entries.

; Avast fileserver shield configuration file

RUN_DIR = "/run/avast"
SOCKET = "/run/avast/scan.sock"
LOG_FILE = "/var/log/avast/fss.log"
CHEST = "/var/lib/avast/chest"
SCANNERS = 4
UNLIMITED_QUEUE = 0

[MONITORS]
SCAN = "/some/directory/to/monitor"
SCAN = "/another/directory/to/monitor"
EXCL = "/path/to/exclude/from/scan"

Global parameters

RUN_DIR

Run directory. The PID file is stored here.

SOCKET

Path to the avast service UNIX socket.

LOG_FILE

Path to the virus log file.

CHEST

Path to the chest directory. The chest directory is where the detected malicious files are moved.
If the chest directory is located in a monitored directory, it is automatically added to the
excluded paths on startup.

SCANNERS

Number of parallel running scans. Set this option to the number of CPU cores to get the best
performance.

UNLIMITED_QUEUE

If set to 1, FSS disables the limit on the fanotify event queue size. For more info, see
FAN_UNLIMITED_QUEUE in fanotify_init(2).

Monitors

SCAN

A path that shall be monitored by FSS.

EXCL

A path to be excluded from monitoring.

31



Files
/etc/avast/fss.conf

Default configuration file. See Configuration.

/var/log/avast/fss.log

Default virus log file. Note that this is distinct from the syslog, which is used by FSS for normal
logging.

/var/lib/avast/chest

Default directory for quarantined infected files.

Caveats
Files created via bound directories (mount --bind) or namespaces (unshare) may circumvent the
fanotify(7) notification system, even if the file ultimately ends up in the monitored directory. To
work around this issue, add also the source directory to the list of monitored directories.

See Also
avast(1), fanotify(7)

32



Appendix E: avast-rest(1) manual page

Name
avast-rest - Avast antivirus REST API

Synopsis
avast-rest [-qvsJ] (-V | -h) [-LP] [-l ADDRESS] [-p PORT] [-c SCANNERS]

Description
avast-rest is an HTTP server which provides a REST API for avast(1) daemon.

The REST API is documented (below) and will provide backward compatibility. Internally, the
scanning requests are translated and forwarded to emsg.sock, which is avast(1) daemon’s
proprietary communication protocol. Unlike avast-protocol(5) and the REST API, emsg.sock protocol
can’t be used directly by end-users and is subject to change.

The service is managed by systemd, as avast-rest.service.

REST API
Currently, there is a single command, which can be used with GET or POST methods.

Scan local file by path

HTTP GET /v1/scan?path=PATH_TO_FILE

Scanning local paths is disabled by default. To enable it, either set server_side_paths in config file
(see Configuration), or add --server-side-paths option to avast-rest program.

Scan uploaded file

HTTP POST /v1/scan?filename=FILE_NAME

The original filename should be given in filename parameter.

The file content is posted in request body as raw binary data. The http method can be POST or PUT,
both work in the same way.

Required headers:

Content-Type: application/octet-stream

Content-Length: FILE_SIZE

33



Additional request parameters

Supported by both GET and POST methods. All parameters can be set globally in the config file (see
Configuration). The value in URL overrides the value from config file.

email=0|1|false|true

This option hints the scanner that the file represents an email message. Enables email-specific
detections. Can be used in an email service integration.

full=0|1|false|true

Scan full files. By default, the scanner chooses which parts of each file should be scanned and
skips the rest as optimization.

archives=0|1|false|true

Unpack archives during scan. Enabled by default.

pup=0|1|false|true

Scanning sensitivity: Report potentially unwanted programs. Disabled by default.

heuristics=0..100

Level of heuristics: 0=disabled, 40=low, 80=medium, 100=high (maximum) Default is 80.

detections=0|1|false|true

Verbose information about all virus detections found in each path. When enabled, virus info is
reported in detections array, instead of a single virus name (which is equivalent to
detections[0].virus). This option is useful mainly for investigating problems with the scanner
(e.g. false positives). Disabled by default.

Response

Examples:

• clean file:

{"issues":[],"vps_version":"21081902"}

• virus:

{"issues":[{"path":["eicar.com.txt"],"virus":"EICAR Test-NOT
virus!!!"}],"vps_version":"21091404"}

• zip bomb:

{"issues":[{"path":["10G.gz","10G"],"warning_id":42110,"warning_str":"The file is a
decompression bomb"}],"vps_version":"21091404"}

34



Schema:

ScanResponse

• issues: array of ScanRecord, required

The array is empty when scan did not find any virus or warning.

• vps_version: string, required

Version of VPS (virus database) that was used to scan the file.

ScanRecord

• path: array of string, required

Infected paths. The first part is the path or filename as given in the request. Each other part is a
path inside an archive. Multiple archive paths are possible in case of wrapped archives.

• virus: string

A name of a virus found in the path. This string is a unique ID of the virus.

• alert_id: string

Unique ID for this alert (occurrence of the infection).

• warning_id: integer

Unique warning ID. Warnings are generated for other (non-virus) issues.

• warning_str: string

Textual description of the warning.

Each ScanRecord contains either virus or warning_id, warning_str.

REST API specification

The REST API specification in OpenAPI 3.0.0 format is available in a file which is installed to
/usr/share/doc/avast-rest/api.yaml.

Options

HTTP Server Options

-l, --listen ADDRESS

Listen on local interface with IP ADDRESS.

-p, --port PORT

Listen on TCP PORT.

35



-t, --threads THREADS

Number of server threads. See CONFIGURATION.

-L, --dont-route

Prevent routing (SO_DONTROUTE).

Scanner Options

-c, --scanners NUM

Number of scanner connections in pool. This is maximum number of concurrent scans.
Exceeding requests will be queued.

-P, --server-side-paths

Allow scanning of server-side paths. See CONFIGURATION.

General Options

-q, --quiet

Do not log to stderr.

-v, --verbose

Increase log level. Affects both stderr and log file (syslog). Default log level is INFO. Single -v
increases to DEBUG.

-s, --silent

Decrease log level. Multiple -s args will decrease further: -s to INFO, -ss to WARNING etc.

-J, --json-log

Switch stderr log to JSON format.

-V, --version

Print program version and exit.

-h, --help

Print help on program options and exit.

Configuration
The config file is /etc/avast/rest.conf. It’s INI format.

After changing the configuration, restart avast-rest.service:

systemctl restart avast-rest.service

Note that reload (without restarting) is not supported.

[server]

36



listen = ADDRESS

Listen on local interface with IP ADDRESS. Can be overridden by command-line option: --listen

port = PORT

Listen on TCP PORT. Can be overridden by command-line option: --port

threads = THREADS

Number of server threads. Should not exceed number of CPUs - the server is asynchronous
(event based), it can handle multiple requests concurrently in a single thread. Can be overridden
by command-line option: --threads

dont_route = true|false

Prevent routing (SO_DONTROUTE).

recv_timeout = SECONDS

Timeout in seconds for receiving data from client. This is total time allowed for the whole
upload.

[engine]

conn_pool = SCANNERS

Number of scanner connections in pool. This is maximum number of concurrent scans.
Exceeding requests will be queued. Can be overridden by command-line option: --scanners

max_queued = REQUESTS

Maximum number of requests that can be waiting for an available scanner.

[scanner]

server_side_paths = true|false

Allow scanning of server-side paths. This is useful when the server and client runs on the same
machine - the client then provides only path to a file, server reads and scans the file. Can be
overridden by command-line option: --server-side-paths

full_files = true|false

Scan full files. By default, the scanner chooses which parts of each file should be scanned and
skips the rest as optimization. Can be overridden by request parameter: full

archives = true|false

Unpack archives during scan. Enabled by default. Can be overridden by request parameter:
archives

pup = true|false

Scan sensitivity: Report potentially unwanted programs. Disabled by default. Can be overridden
by request parameter: pup

heuristics = 0-100

Level of heuristics: 0=disabled, 40=low, 80=medium, 100=high (maximum) Can be overridden by

37



request parameter: heuristics

detections = true|false

Verbose information about all virus detections found in each path. Can be overridden by request
parameter: detections

See Also
avast(1)

38



Appendix F: avastlic(1) manual page

Name
avastlic - obtains license for Avast antivirus for Linux

Synopsis
avastlic -o new_license_file_path -c avast_activation_code [-n]

avastlic -h

Description
The avastlic command can be used to convert Avast antivirus activation code into a license file.
Please note that for some codes this can only be done a limited number of times. Also, some
activation codes require a customer information to be entered and as such the tool is by default
interactive.

After downloading a license file with avastlic, install it by copying it to
/etc/avast/license.avastlic.

In case the downloaded license is valid for multiple machines, it is recommended to download the
license once and then distribute the license file to all machines.

Options
-o, -f

File path to store the obtained license into.

-c

Activation code valid for Avast antivirus for Linux

-n

Non-interactive mode. If the activation code requires customer information, the activation will
fail.

-h, --help

Print help.

See Also
avast(1), scan(1), avast-protocol(5)

39



Appendix G: REST API specification

openapi: 3.0.0
info:
  description: Avast Linux AV Scan API
  version: "1.1.0"
  title: Scan API
  contact:
    name: Avast Software
    email: support@business.avast.com
paths:
  /v1/scan:
    get:
      summary: Scan server-side file
      description: Scan a file by path. The file is opened by the server on it's local
filesystem. This is mostly useful for clients running on the same machine as the server.
Scanning server-side paths is disabled by default.
      parameters:
        - in: query
          name: path
          description: Server-side path to be scanned
          required: true
          schema:
            type: string
      responses:
        '200':
          description: scan results
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/ScanResponse'
        '400':
          description: client error - invalid parameters
        '500':
          description: scan engine error
    post:
      summary: Scan uploaded file
      description: Scan an uploaded file. The file content is received in body (raw binary).
The original filename must be given in query parameters.
      parameters:
        - in: query
          name: filename
          description: The original filename. The filename will be used in the response to
identify main file. The extension may be used by scanning engine as a hint.
          required: true
          schema:
            type: string
      responses:
        '200':
          description: scan results
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/ScanResponse'

40



        '400':
          description: client error - invalid parameters
        '500':
          description: scan engine error
      requestBody:
        content:
          application/octet-stream:
            schema:
              type: string
              format: binary
        description: File content
    parameters:
      - in: query
        name: email
        description: 'This option hints the scanner that the file represents an email message.
Enables email-specific detections. Can be used in an email service integration.'
        schema:
          type: boolean
          default: false
      - in: query
        name: full
        description: 'Scan full files. By default, the scanner chooses which parts of each file
should be scanned and skips the rest as an optimization.'
        schema:
          type: boolean
          default: false
      - in: query
        name: archives
        description: 'Unpack archives during scan.'
        schema:
          type: boolean
          default: true
      - in: query
        name: pup
        description: 'Scanning sensitivity: Report potentially unwanted programs.'
        schema:
          type: boolean
          default: false
      - in: query
        name: heuristics
        description: 'Level of heuristics: 0=disabled, 40=low, 80=medium, 100=high'
        schema:
          type: integer
          format: int32
          minimum: 0
          maximum: 100
          default: 80
      - in: query
        name: detections
        description: 'Enable verbose information about all virus detections (`detections` in
scan response)'
        schema:
          type: boolean
          default: false
      - in: header
        name: X-Correlation-Id

41



        description: 'A tag that will be attached to log messages related to this request'
        schema:
          type: string
        required: false

components:
  schemas:
    ScanResponse:
      type: object
      required:
        - issues
        - vps_version
      properties:
        issues:
          type: array
          items:
            $ref: '#/components/schemas/ScanRecord'
        vps_version:
          description: Version of VPS (virus database) that was used to scan the file.
          type: string
          example: 21091404
    ScanRecord:
      type: object
      required:
        - path
      properties:
        path:
          description: Infected paths. The first part is the path or filename as given in the
request. Each other part is a path inside an archive. Multiple archive paths are possible in
case of wrapped archives.
          type: array
          items:
            type: string
          example: ["/path/to/archive.zip", "test/eicar.txt"]
        virus:
          description: A name of a virus found in the path. This string is a unique ID of the
virus.
          type: string
          example: "EICAR Test-NOT virus!!!"
        alert_id:
          description: Unique ID for this alert (occurrence of the infection). Please attach
alert ID when reporting false positives. Note that the alert ID together with other metadata
are sent to Avast servers only when STATISTICS are enabled in avast.conf.
          type: string
          example: "e4d92fd79429"
        detections:
          description: Verbose information about all virus detections found in the path. When
enabled in config or by query parameter, this replaces the single `virus` field by an array,
where detections[0].virus is the reported virus and further items may contain additional
detections. This is useful mainly for investigating problems with the scanner (e.g. false
positives).
          type: array
          items:
            $ref: '#/components/schemas/VirusDetection'
        warning_id:
          description: Unique warning ID. Warnings are generated for other (non-virus) issues.

42



          type: integer
          format: uint32
          example: 42110
        warning_str:
          description: Textual description of the warning.
          type: string
          example: The file is a decompression bomb
    VirusDetection:
      type: object
      required:
        - virus
      properties:
        virus:
          description: A name of a virus found in the path. This string is a unique ID of the
virus.
          type: string
          example: "EICAR Test-NOT virus!!!"
        algo:
          description: Detection algorithm that found the virus.
          type: string
          example: "troj"
        aux:
          description: Auxiliary information about the detection.
          type: string
          example: "PE3-C669AF050002E7759F732D603981C3F0"
        severity:
          description: A short unique name identifying the severity. Severity is broader
category of the threat.
          type: string
          example: "malware"
        severity_full:
          description: Human-readable name of the severity.
          type: string
          example: "Malicious software"
        type:
          description: A short name identifying the type of the threat (unique among types in a
severity).
          type: string
          example: "rootkit"
        type_full:
          description: Human-readable name of the type.
          type: string
          example: "Rootkit"
        desc:
          description: Description of the threat that can be displayed to users.
          type: string
          example: "This threat hides deep in the kernel level of your operating system to try
to avoid antivirus software."

43



Appendix H: Avast public key

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGHpNpwBEACqSWHJaEJtaRztii+eLmFpF0pxKlzsPsUSwSN5Pb/li2eChJhn
c2qTqCX7KvZrwp4tp1OpFhMDtyPDlXJj+3kdU6ErTGv9fkP8P71DTg+BiBdS6A6v
cnECwYxXTLFokk5RqijNfI5nD/qQiyBmdTPY1BQzSEZ9OsCOwHk80LAjgbgzqHNT
YTXT5WkYqUP3oCrDZ9bHS25uIaFHwOIXwkb+U7bVXWZlu4QldM/YkyjTrNEbWOM3
P6taps/WsPl77uTacA8Ll5GMh5Xm3kMldk7oGTqYfEI9gJD2EX8Hi/VFZEHCwDzB
H6U00xuYu6ecRlg+T416A2zDs44jvpEKR/TYqTxrFGV5imImdpNRx5HT8eDR154/
/tEV+G0OSI1I02Gmfv2GZqs2qDN1ACUmIgumI1qNetaKFUGT9g8F9eGXywr5xcjM
ppcsJPsiCtPwNKdlWaGc7xorUBVXv6wK2e0v9uN0bZ8pn2+jXdywG8f/Jur3OGc6
fVRef019b2jGf2QKA9vXFi0uYBkxWZ02r9ULayyG7GraHtoBwSHFcq/goZEGCf15
t/O+GIIfxdEOpi1jUYvzRHFIzPZqP1Gw5OEvEei3lbJHeMx4vkdzmRjGeq3ApSWM
Jnd2gC42jUXJVh/sDpXXop2qR3sLV2SS9IW/xs3VMfldzIIsZ1dQKvHEJQARAQAB
tBdsaW51eC1hdiA8cmVAYXZhc3QuY29tPokCTgQTAQgAOBYhBDhlFBEPGoAGeVQ3
tRKfsI+97P41BQJh6TacAhsDBQsJCAcCBhUKCQgLAgQWAgMBAh4BAheAAAoJEBKf
sI+97P41Z6oQAJC3GEQlxRVh+vH4DGNVDX8xe94YQ91MULEzr4KyQJhTkgRZ/AY2
gBjNZULzOG63FN4/88ajPmkE7GYMErokfKdUCp5qUbxsrDoLAP5l0/WkzlSaw8wv
T0kDoFHvi+POdeqJrxQwpg+z65ukX4H+d0YPMWJ3a5aU+nDs71CRkT2JzUwDW0Kh
3ABC45uzBoGzgU2JIbsLBH8wOO8t7IRedd0nr/JzPrQ8ZcnRCA5W2rjr2yKDM+zy
+yZRST/+32k5gM1DkaVkjtFawINxXTY2KU4qQt/FfeJpc8kQe2BD8eZW8H0yV5Pl
95s1sXVdDHM8hC036UnirPK9myQaQRiQP48dolp+dHQ/ccLamtoGEi+MGiPpFqYe
FOtgUIuuKWnlymCSa75YxVmBBtGI5W0EAWglIiq20LiCLAp04w8GwajOqnFIfs0V
e4tDLnTYd5Y/7B/kSTMezix8ULVnNrCb1k9C8bRH4nQLNNbeZvbKkIUC8mo+yikz
b8xfDd8pnFQMF9qT4u1Be1cU+rdJncrRX70hJBHrOPw5CTs7GulJazMoYlhlU+UH
4EnfHEY3+TH2GcEQRmpMi4ng4PsBkmjHOsAY1388G7O8sqKHmvTV+p2FQ68qXY1h
Huqk6UN5LFjcxGQFYwR48sGvV+Fi//Ml9GeZwZmIXaWEmhKpY3qVi5pmuQINBGHp
NpwBEAC1RRoL5FD8xe9jUKEfwULW1noMpNtaoc9OItyTIhwmxXb2OghxJGl/pB+h
/Pj3ZjM3zJ6bINlxCTzSL4E7d5Sf9X0podvnovC+MuRhG4FTYGNGxajOvt2G5Y+9
DWq2OuXMU9CfFq3K3YUmwUKOfm+OwaScFP56EIvF7EumHHyGnKKPY863Qw6v/xk5
A1k9aP7zjo+crUeZgzJWN5TZ+JkUPxyoSlMKaScjebXT9Ofzut0lH+8nEzscZ/gh
bFwZ9yHzxrmLDxAEGHg22FRouahEXHpk3KeapvZNfmyNeiwnEYx8dLZvJFKQIjLY
QnuD/i8xrWH3fx0gs80PQ0SkvDSuAyBDNrNyvmEAASSM1ALU4MqIoY1itfmYmBTk
C51U0fJybzzyU84hptpcmOO3Sh/2gVc7ptDmcrfMtTIbBNS7pBBvsrTCePpb7wAy
MhZHoVDrudyq0Uymzdv4SM0auv9Rot/PcVV2W3ka6Q3tMC5GdxsEGNYFVHfXxqGf
nraMeLIo39LkHuoM52Q3rT9OxiDCIoTuZvFhhaR5PzB5fjqysx0Dg/DATXpCPb6c
q6k7DTf5QAGWzVpZ3KXkL43YLD0xYvt0Pl71jE/3TEcdKt/jOwu+eOGeoWhWzNqx
BNbc8ObTXPGlG8s8x4qUj4poBvNAcxKTWXFYAeL14XYpaDa14QARAQABiQI2BBgB
CAAgFiEEOGUUEQ8agAZ5VDe1Ep+wj73s/jUFAmHpNpwCGwwACgkQEp+wj73s/jVy
CA//QGqCJz4yaphFwGae8wW6i+KGTeFOhOGiukxJBtSUCIOLIsRWu73SRo/nY3xN
eGrQZJ4C3ip9Nc3Nvq4iDiPisyGlDA2c5rMDHpfvZuHG7N3g96RYI+ZyQ8/oyWaP
FwmN1uoTPljTj5Qk0jsxpXTmHZR8Mfk2uDba2MNACsV4fhWby82pWkJGgLSPcel9
Dss1cQRHk7129WjUd0k8JdFOYsjbWae0m3imj0+rW9xNdPIaHEGjC2fxsOOreuNZ
BSHHOwOSbQ4TE5tm3Vyl7cHJZ30hpUHPBOR/EyCbu9WSAdW/LP/6UbE5imdyi9QB
nuJrNA/HtdNTqg5ZScbBJHtEW5+NnIuVAbORWQ+lMMwpddRYwTAXSEz79FLZJOQj
8rOkl6RhsfG1TvQWmpR5V+AStnwwqUJ7YxqWISoBkKvDvAOuOM/1BRteY0yYJD7+
kReeODuE3ay/oML7CqifD/Xw4FiKLQ+q1wv2yn143ju7u33VtKuZyUPFhQsCjO/u
5Uc0KRQKlE0GuzHbRTFPn0UXfofp5jCe8wkQkGo55icXEqoWzL4c6YBHZcFuHW8B
cSKnATzQPhEgqK6LVy92AzbIIEt2CiQGNL0jWpORMJL4BWS/SuzX05pH5OzYIm3K
yp+Rq3aUCUEQoIQkPXQvDav/Vh+PdHx+oc3Anu+RQRhTLe0=
=okvW
-----END PGP PUBLIC KEY BLOCK-----

44



Appendix I: Third-party libraries
This software uses third-party libraries. Most of them are open-source software, some are
commercial.

The libraries are either statically linked into the binaries, or provided by the OS and linked
dynamically.

The list is split into three parts:

• External dependencies. These are provided by the OS, the RPM/DEB packages depend on them.

• Internal static dependencies. Linked into the programs distributed in RPM/DEB packages.

• VPS static dependencies. Linked into the VPS, which is distributed in VPS update channel.

External dependencies
The versions of these libraries depend on the specific Linux distribution.

• avast: systemd, curl, uuid

• avast-fss: systemd

• avast-rest: systemd, uuid

Internal static dependencies
These libraries are linked statically, thus embedded in the binaries.

• boost 1.84.0

• bspatch FreeBSD rev. 352742 ported to Linux

• fmt 10.2.1

• libev 4.33 (patched)

• nlohmann/json 3.11.3

• pegtl 3.2.7

• protobuf 3.21.9

VPS static dependencies
These libraries are linked statically by VPS engine (downloaded and updated together with virus
definitions).

• 7-Zip

• aPLib

• BriefLZ

• bzip2

45

https://www.boost.org/
https://svnweb.freebsd.org/base/head/usr.bin/bsdiff/
https://github.com/fmtlib/fmt
http://software.schmorp.de/pkg/libev.html
https://github.com/nlohmann/json/
https://github.com/taocpp/PEGTL
https://github.com/protocolbuffers/protobuf
https://www.7-zip.org/sdk.html
https://ibsensoftware.com/products_aPLib.html
https://github.com/jibsen/brieflz
https://www.sourceware.org/bzip2/


• Frozen

• libmspack

• LZFSE

• Nanopb

• PCRE

• SQLite

• UnRAR

• UPX

• xmlParser

• YARA

• zlib

46

https://github.com/serge-sans-paille/frozen
https://www.cabextract.org.uk/libmspack/
https://github.com/lzfse/lzfse
https://github.com/nanopb/nanopb
https://www.pcre.org/
https://www.sqlite.org/
https://www.rarlab.com/rar_add.htm
https://upx.github.io/
https://www.applied-mathematics.net/tools/xmlParser.html
https://github.com/virustotal/yara
https://www.zlib.net/

	Avast Antivirus for Linux: Technical Documentation
	Table of Contents
	Version history
	1. Overview
	Packages
	Business products

	2. Installation
	Debian/Ubuntu
	RHEL/CentOS
	Installation of virus definitions
	Installing in a container or with alternative init system
	Setting up non-privileged user account
	Setting up virus definitions updates
	Running the daemons

	Avast public key

	3. Licensing
	4. Configuration
	Features requiring Internet access

	5. Operation
	Systemd units
	Running scans

	6. Virus definitions updates
	Local virus definitions mirrors
	Security considerations

	7. REST API
	Specification
	Bash client
	NGINX integration (RHEL/CentOS)

	8. AMaViS integration
	Appendix A: scan(1) manual page
	Appendix B: avast(1) manual page
	Appendix C: avast-protocol(5) manual page
	Appendix D: avast-fss(1) manual page
	Appendix E: avast-rest(1) manual page
	Appendix F: avastlic(1) manual page
	Appendix G: REST API specification
	Appendix H: Avast public key
	Appendix I: Third-party libraries

